<u>PREPARATION OF COMPETENT CELLS</u> RbCl₂ Method

The following procedure can be used to obtain competent cells with a transformation frequency of 10^6 - 10^7 colonies per microgram of DNA. Conveniently, these cells can be stored for months with relatively no loss in efficiency.

Materials:

Buffers

Transformation buffer I (TfbI): 30 mM KOAc 100 mM RbCl₂ 10 mM RbCl₂ 50 mM MnCl₂ 15% Glycerol (v/v) pH = 5.8

Transformation buffer II (TfbII) :

10 mM MOPS (or PIPES) 75 mM CaCl₂ 10 mM RbCl₂ 15% Glycerol (v/v) pH = 6.5

MAKING TRANSFORMATION BUFFERS

	Concentration	Amt
For 100 ml TfbI	Separately Autoclaved Stocks	Added (ml)
30 mM KOAc	0.3 M	10
100 mM RbCl ₂	1 M*	10
10 mM CaCl ₂	1 M	1
50 mM MnCl ₂	1 M	5
15% Glycerol	-	15

pH to 5.8 with HOAc, make up to 100 mls with H₂O, Nalgene filter sterilize.

For 20ml TfbII	Separately Autoclaved Stocks	Added(ml)
10mM MOPS (PIPES)	1 M (pH6.5)	0.2

75mM CaCl ₂	1 M	0.15
10mM RbCl ₂	1 M*	0.2
15% Glycerol	-	3

Add H_2O to 15 ml, readjust pH to 6.5 with KOH, and make up to 20 ml with H_2O . Filter sterilize through disc.

Procedure:

- 1. Streak from DH-1 stock onto LB plate Incubate overnight at 37°C.
- 2. Pick a single colony and inoculate a 5 ml culture of LB. Incubate overnight at 37°C.
- 3. Add overnight culture to 100mls LB. Grow until OD = 0.5. This usually takes at least 2 hours. (optimal OD = 0.48).
- 4. Divide into 4 30ml Corex tubes. Chill 5' on ice.
 Spin 6000 rpm, 5', 4°C. Note shape of pellet.
- 5. Resuspend cells in 2/5 volume TfbI. (2/5V = 40ml, therefore 10 ml per tube.) (Use a 'greenie meanie')
- 6. Ice cells 5'.
 Spin 6000 rpm, 5' 4°C.
 Pellet should look more donut-like than in 4.
- 7. Resuspend cells in 1/25 original volume TfbII. (1/25v = 4 ml, therefore 1 ml per tube).
- 8. Pool. This helps to keep the number of cells per Eppendorf constant.
- 9. Ice 15'.
- 10. Aliquot 100 g into pre-chilled Eppendorfs with cold pipettes.
- 11. Snap freeze in powdered dry ice Store at -70°C.

Comments:

- 1. Keep everything cold. Work in cold room. Put pipettes and Eppendorfs in cold room at step 3.
- 2. Optimal OD is flexible. Cultures can be used with ODs as high as .9. Basically, a culture in mid to late log phase is all that is needed.
- 3. Times during which the cells are chilled are flexible. When handling many tubes don't worry about going over the suggested incubation times.
- 4. When many tubes are needed, freeze as 50g or 100g aliquots.